特殊的平行四边形教案
作为一位杰出的老师,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的特殊的平行四边形教案,欢迎大家借鉴与参考,希望对大家有所帮助。
特殊的平行四边形教案1
教学目标:
1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握特殊平行四边形性质与判定。
难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
1.特殊平行四边形的性质.
1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm
则BC=_____cm,△BOC的周长=_____cm
2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,
则你能求出哪些线段的长度?
3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,
则AB=_____cm,△BOC的周长=_______cm.
小结:特殊平行四边形的性质(PPT呈现)
2.特殊平行四边形的判定.
要使平行四边形ABCD成为矩形,需要增加的条件________.
要使平行四边形ABCD成为菱形,需要增加的条件________.
要使矩形ABCD成为正方形,需要增加的条件________.
要使菱形ABCD成为正方形,需要增加的条件________.
小结:特殊平行四边形的判定(PPT呈现)
二、深化提高:
1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,
四边形ADCE是一个正方形?并给出证明.
2.如图,矩形ABCD的对角线AC、BD交于点O,
过点D作DP∥OC,过C点作CP∥DO,交DP于点P,
试判断四边形CODP的形状.
变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?
变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?
3.如图,在中,是边的中点,分别是及其延长线上的点,.
(1)求证:.
(2)请连结,试判断四边形的形状,并说明理由.
(3)若四边形是菱形,判断的形状。
三、拓展提高
1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、
△BCE、△ACF,
(1)四边形ADEF是什么四边形?并说明理由
(2)当△ABC满足什么条件时,四边形ADEF是菱形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.
2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,
四、课堂小结
五、作业
1.如图,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E,PF⊥CD,垂足为F。
求证:EF=AP
2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,
EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。
3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,
DH⊥AB于H,求:DH的长。
特殊的平行四边形教案2
学习目标:
1.能运用综合法证明正方形性质定理。
2.体会证明过程中所运用的归纳概括以及转化等 数学思想方法
课前热身:
矩形、菱形有哪些性质和判别方法?
正方形有哪些性质?你能证明吗?
自主学习
1.证明有一个角是直角的菱形是正方形
2.证明对角线相等的菱形是正方形
4.议一议
①依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。
②依次连接特殊平行四边形 四边中点呢?
课堂小结
1、顺次连接任意四边形各边的中点得到的四边形是
2、顺次连接矩形各边的中点得到的四边形是
3、顺次连接菱形各边的中点得到的四边形是
4、顺次连接正 方形各边的中点得到的四边形是
反馈检测:
1.正方形的边长为 ,则它的对角线长 ,若正方形的对角线长为 ,它的边长为 。
2.边长为 的.正方形,在一个角 剪掉一 个边长为的 正方形,则所剩余 图形的周长为 。
3.已知:如图 Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F。
求证:四边形CEDF是正方形。
布 置作业:
A组:习题 4、2 创新设计 B 组 习题4.、2 C 组 背定义
特殊的平行四边形教案3
教学目标:
知识与技能
1.探索并掌握平行四边形、矩形、菱形、正方形的定义
2.掌握它们之间的区别与联系
过程与方法
在观察、操作的探索过程中,发展学生的合情推理能力。
教学重点:平行四边形的定义
教学难点:平行四边形、特殊平行四边形彼此之间的关系
教学过程:
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线。
强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
边角
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示四边形与特殊四边形的关系,如图.
3.对比引出平行四边形的概念.
(1)引导学生根据上图,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(特性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:
①∵ABCD,
∴AD//BC,AB//CD(平行四边形的定义)
②∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形(平行四边形的定义)
二、讲授新课
议一议:
用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.
1.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。
注意:用定义判定一个四边形是矩形必须同时满足:①有一个角是直角②是平行四边形,两个条件缺一不可。
思考:
(1)如果把“平行四边形”换成“四边形”或去掉“有一个角是直角”能保证是矩形吗?
(2)增加条件行不行?如“有四个角是直角的平行四边形叫做矩形”可以吗?
引导学生思考后,进一步明确定义的内涵。
类比“平行四边形演变成矩形”而得到菱形。强调平行四边形增加一个特定条件“一组邻边相等”就得到菱形
可以发现:随着AB的运动,它仍然保持平行四边形的形状,但BC的长度却在不断地改变当BC恰好与AB相等时,就得到一种特殊的四边形———菱形。
2.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
想一想:平行四边形是否可能有一组邻边相等并且有一个角是直角呢?这时,平行四边形演变成什么图形?
学生思考后回答。师生共同总结得出:
3.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
试一试:正方形、、矩形、菱形与平行四边形之间存在“特殊”与“一般”的关系,正方形、、矩形、菱形之间也存在“特殊”与“一般”的关系,你能用一张图来表示它们之间的关系吗?把你设计的图和同学们讨论,并写下来。
引导学生思考后,进行小组讨论。归纳如下:
集合表示,突出关系
平行四边形
矩形正方形菱形
三、练习巩固概念P54
四、课堂小结:
师生共同总结本节课内容。
矩形
有一个角是直角,
平行四边形且有一组邻边相等正方形
菱形
五、课后作业
六、课后反思
特殊的平行四边形教案4
学习目标:
1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系
2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、
3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力
学习重难点:
重点:矩形的性质定理
难点:灵活应用矩形的性质进行有关的计算与证明
课前准备
教具准备:活动平行四边形框架、教师准备PPT课件
教学过程:
知识回顾
1、什么叫平行四边形?
2、平行四边形有哪些性质?
【设计意图】:
通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫
合作探究一:矩形的定义
阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?
用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?
【设计意图】:
通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维
归纳:有一个角是直角的平行四边形叫做矩形、
合作探究二:矩形的性质定理
1、自主完成18页的观察与思考,通过实际操作回答提出的问题
2、小组合作:完成对性质的证明过程
【设计意图】:
通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础
矩形的性质定理1:矩形的四个角都是直角
矩形的性质定理2:矩形的两条对角线相等
合作探究三:直角三角形的性质定理3
设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段
(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?
【设计意图】:
根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的必要性
结论:直角三角形斜边上的中线等于斜边的一半
例题讲解:
例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?
当堂检测:
1、矩形具有而平行四边形不具有的性质()
(A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分
2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线
(1)若BD=3㎝,则AC=㎝
(2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝
3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长
4、工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;
(2)摆放成如图(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;
(3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是____,根据的数学道理是________________。
课堂小结:
请说出你本节课的收获,与大家一块分享!!
作业:
课本P、20第2题
板书设计:
xxx
特殊的平行四边形教案5
教学目标
(一)教学知识点
1、能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
(二)能力训练要求
1、经历探索、猜想、证明的过程,进一步发展推理论证能力。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
3、体会证明过程中所运用的归纳概括以及转化等数学思想方法。
(三)情感与价值观要求
1、通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性。
2、体会数学与生活的联系。
教学重点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学难点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学方法:启问——交流式教学法。
教学过程
1、巧设现实情境,引入新课
[师]通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理。
这节课我们来应用它们证明和计算一些题。
2、讲授新课
[师]下面大家来猜一猜,想一想
依次连接任意四边形各边的中点可以得到一个平行四边形。那么,依次连接正方形各边的中点。(如图)能得到—个怎样的图形呢?先猜一猜,再证明。